
A Shadow Based Method for Image to Model Registration

Alejandro J. Troccoli Peter K. Allen
Computer Science Department

Columbia University
New York, NY 10027

ABSTRACT

This paper presents a novel method for 2D to 3D texture
mapping using shadows as cues. This work is part of a
larger set of methods that address the entire 3D modeling
pipeline to create geometrically and photometrically accu-
rate models using a variety of data sources. The focus is
on building models of large outdoor, urban, historic and
archaeological sites. We pose registration of 2D images
with the 3D model as an optimization problem that uses
knowledge of the Sun’s position to estimate shadows in
a scene, and use the shadows produced as a cue to
refine the registration parameters. Results are presented for
registration where ground truth is known and also for a
large scale model consisting of 14 3D scans and 10 images
on a large archaeological site in Sicily.

I. INTRODUCTION

The field of 3D reconstruction has been rapidly growing
during the last decade as range finders became more accu-
rate, affordable, available, and deployed in a wide variety
of applications. In particular, an area that has welcomed
the new advances in technology is cultural heritage preser-
vation, where 3D modeling provides a means of recording
historic sites or objects, track changes and allow wider
audiences to virtually see or tour these sites. Unfortunately,
the volumes of data are usually of considerable size and
the entire modeling pipeline requires significant user in-
teraction. Our work centers on developing new tools and
methods to recover complete and photometric models of
large sites that minimize human intervention in 3D to 3D
registration and 2D to 3D texture mapping of the models
with imagery [1].

In this paper we present methods we developed to build
a photorealistic 3D model of an ancient archaeological site,
the Acropolis at Mt. Polizzo. Mt. Polizzo is located in
the Mediterranean island of Sicily, and hosts the remains
of ancient Greek civilizations. Our goal is to accurately
document, using range, image, and GIS data, the steps of the
archaeological excavation taking place. An excavation is a
destructive process, once an object of interest is discovered,
it needs to be removed for the excavation to continue. 3D
modeling using range data is an excellent tool for recording
each step of an excavation. Not only does dense range
data provide a more complete record than that provided by
traditional GIS and image data, but it also allows for new
ways of visualization. Figure 1 shows a textured 3D model

Fig. 1. Different data sources can be integrated to provide archaeologist
with tools to visualize and document sites. This figure shows a textured
3D model combined with a panoramic image and GIS data.

combined with a panoramic image and GIS data. Integrated
models such as these allow dynamic user interaction with
the model, and provide accurate, in-depth visualizations
both on-site and remotely.

Building integrated models such as this is a complex pro-
cess. In our research we have addressed all components of
this problem, including 3D scanning, 3D to 3D registration,
and 2D to 3D image texture mapping. The focus of this
paper is on novel 2D to 3D texture mapping using shadows
as a registration cue.

The remainder of our paper is structured as follows.
Section II gives an overview of the different techniques
used for image to model registration among projects similar
to ours. Section III reviews our scanning methodology and
the problems we encountered that lead to development of a
new method for 2D to 3D registration based on the shadows
cast by the sun; section IV gives a detail description of our
shadow based registration and section V presents a detailed
performance analysis of our algorithm. We close with a
discussion and a description of ongoing and future work.

II. PREVIOUS WORK

In a typical 3D acquisition pipeline [2], a specialized
3D scanner is used to acquire precise geometry and a
digital camera captures appearance information. Unless the
3D scanner provides a calibrated built in camera, the 3D
model and images must be registered together in order
to connect geometry and texture information. Even if the

scanner provides a pre-calibrated built in camera, this might
not be suitable for the application at hand, in which case it
will be necessary to acquire photographs using a different
camera and register the images to the model.

This problem of image to model registration is closely
related to the problem of camera calibration, which finds
a mapping between the 3D world (object space) and a
2D image. This mapping is characterized by a rigid trans-
formation and a camera model, also referred to as the
camera’s extrinsic and intrinsic parameters. The rigid body
transformation takes 3D points from object space to 3D
points in the camera’s reference frame, and the camera
model describes how these are projected onto the image
plane.

The camera calibration problem is solved by matching
features in the 3D model with features in the image. These
features are usually points, lines or special designed objects
that are placed in the scene. The matching process can be
automatic or user driven, and the number of feature pairs
required will depend on whether we are solving for the
intrinsic, extrinsic or both parameters sets. Several meth-
ods have been developed to solve the camera calibration
problem using grid patterns (e.g. [3], [4]).

In the area of image registration for 3D modeling using
dense 3D data, several approaches can be taken, depending
on factors such as the type of range scanner being used
(laser-stripe vs. time of flight), the scale of the model to be
built and the environment conditions. For example, some
configurations allow texture and geometry to be acquired
by the same camera as in the works of Pulli et al. [5],
and Bernardini et al. [6], and hence there is no need for
calibration. Such a case is usually limited to laser stripe
range finders, which can only cover short ranges and have
a restricted set of working environment conditions.

If the images are to be acquired by a camera that is not
built in to the range scanner, then it is possible to pre-
calibrate before deployment. Such a system was developed
for the Digital Michelangelo project of Levoy et al. [7]. Pre-
calibration, when possible, has the advantage of avoiding
any user driven post-processing. However, one must be
certain that the calibration remains constant during the
whole scanning process to avoid unexpected errors, or
provide a re-calibration mechanism. Pre-calibration works
well for objects that are scanned at short distances because
a good pixel to area ratio is then guaranteed.

When pre-calibration is not possible, then each image
will have to be registered. A typical scenario of small
scale object modeling where each image is individually
registered is described by Rocchini et al. [8]. Here, image to
model registration is done manually by a user who selects
corresponding pairs of points. In a similar context of small
object modeling, Lensch et al. [9] present an automatic
method for image registration based on silhouette matching,
where the contour of a rendered version of the object is
matched against the silhouette of the object in the image. No
user intervention is required, but their method is limited to

cases where a single image completely captures the object.
Departing from the above are those methods specifically

developed for large scale modeling. Our methods fall in this
area. Not only is the scale different in our case, but we are
also dealing with outdoor scenes, where the environment
conditions are not easily controlled. This usually rules out
the possibility of using triangulation based range finders.
Instead, time of flight laser scanners are typically used. To
capture texture information, a camera can be fixed to the
scanner and calibrated. Still in some cases, when the scanner
is reaching objects that are more than 50m away, it might be
necessary to capture additional images closer to the scene to
obtain a better pixel to area resolution. In [10] we present
an automatic method for image to model registration of
urban scenes, where 3D lines are extracted from the point
clouds of buildings and matched against edges extracted
from the images. Ikeuchi et al. [11] in their Great Buddha
work, use reflectance edges obtained from the 3D points
and match them against edges in the image to obtain the
camera position.

III. MODELING THE ACROPOLIS AT MT. POLIZZO

To model the Acropolis at Mt. Polizzo we used a time-
of-flight laser scanner (Cyrax 2500) to measure the distance
to points on the site. Data from the scanner comprises point
clouds, with each point consisting of four coordinates (x,y,z)
and a value representing the amplitude of the laser light
reflected back to the scanner. A scan of 1,000 x 1,000 takes
about 10 minutes.

Multiple scans are required to acquire a site such as the
Acropolis at Mt. Polizzo. The resulting point clouds need
to be registered with respect to the site’s coordinate system
for later linking the model with the location of the findings
recorded by the archaeologists. A site’s coordinate system
is usually established using GPS data and setting up a set
of reference points on the ground. To solve the 3D to 3D
registration problem we used a set of specially designed
targets and a theodolite (Leica TCR 705 total station).
Before taking a scan, we placed the targets on the area we
planned to cover and recorded their position in the site’s
coordinate system using the total station. We then scanned
the scene at low resolution to identify and acquire the targets
position within the scanner’s coordinate system, and hence
solving the 3D to 3D registration problem. The targets were
removed and a full resolution scan was acquired. The final
geometric model was generated from the registered point
clouds using the VripPack software developed by Curless
and Levoy [12]. The output of VripPack is the best mesh
that fits the point cloud data, smoothed to account for
registration errors.

In addition to the scanner, we used a Nikon D100 digital
camera to acquire texture information. The camera was
mounted on the scanner’s box and for every acquired scan
we took a photograph. We performed a simple calibration
prior to our trip to have an estimate of the camera’s external
and internal parameters. We scanned flat wall with the

Fig. 2. Modeling the Acropolis at Mt. Polizzo. Top left: Targets have been placed in the area to be scanned. Top right: Point cloud of scanned area.
Bottom left: Mesh resulting from merging all point clouds. Bottom right: Textured mesh with panorama as background.

room’s lights off and the camera’s shutter open for the
duration of the scanning (8 sec). As a result, we obtained
an image of the grid pattern described by the laser as it
sampled the wall and the 3D coordinates of each sample. We
repeated the scanning from a different distance and angle
to acquire more samples. Then we segmented the images
to obtain the centroid of each grid point, and solved the
calibration problem using the 2D to 3D correspondences
just obtained. While this calibration is a good estimate of the
camera’s parameters, there are some cases in which it breaks
down due to accumulated errors during scan registration
and geometry smoothing. In addition, this calibration is
very accurate on depths where calibration points had been
measured, but not so good at other ranges. For these reasons,
during data processing we found out that a large number of
photographs were misaligned. To solve these misalignments
we developed a new method based on the shadows cast by
the sun. Since we have the latitude and longitude of the site
and the time at which each photograph was taken, we can
compute the location of the sun and find areas on the 3D
model that should be in shadow. By matching these with the
shadows in the image we solve the 2D to 3D registration
problem.

The final texture mapped model was created using a
software package we developed, which, given a mesh and

a set of calibrated images, assigns each mesh triangle a
suitable texture. Our software can also integrate GIS data
and panoramic images, as shown in Figure 1.

IV. USING SHADOWS FOR 2D TO 3D REGISTRATION

The main contribution of this paper is a novel technique
for image to model registration based on the shadows cast
by the sun. Assuming the internal parameters of a camera
are known, we find the camera position with respect to the
3D model:

c = (φx, φy, φz, tx, ty, tz)

This is a 6 parameter rigid body transform that maps
a point Xw in world coordinates into its corresponding
point Xc in the camera reference frame. The first three
parameters (Euler angles) represent the angles of rotation
about each of the coordinate axes and form a rotation matrix
R(φx, φy, φz) = Rx(φx)Ry(φy)Rz(φz). The remaining
three are the components of a translation vector t. Together,
they satisfy the following relationship:

Xc = R(φx, φy, φz)Xw + t

If we knew the correct set of external camera parameters
(φxf

, φyf
, φzf

, txf
, tyf

, tzf
) then an orthographic view of a

Es

Shadow
cone

Fig. 3. An orthographic view from the point Es looking at the model in
the direction of the sun rays should contain no shadows.

textured version of the model with the eye set at some point
Es and looking in the direction of the sun rays should show
no texture representing shadows (see Figure 3). However,
if the texture is misaligned such a rendering will show a
number of shadow pixels. Our method exploits this idea by
searching the parameter space for a point that minimizes
the number of pixels representing shadows in the rendered
image of the model.he

The problem is properly stated as follows. Let I denote
the image to be registered and M the model, then f , our
cost function, is defined as

f(Ir) =
∑

x,y∈Ir

shadow(Ir, x, y)

where Ir stands for a rendered image of M as seen from
Es textured with I using a texture camera with external
parameters set to c and

shadow(Ir, x, y) =

 1 if pixel(x,y) of Ir

is a shadow pixel
0 otherwise.

Given an initial estimate of the camera position c0, then
the problem is to find a point cf that minimizes f . In
our case, we already have the initial estimate. But if we
wanted to generalize this method to cases where images
are acquired by a camera whose position is unrestricted,
a user could provide an initial estimate before starting the
minimization.

The complete registration pipeline consists of 2 stages: a
pre-processing stage and a minimization stage. In the pre-
processing stage the shadows in the image are found and
masked out with a given color. In the minimization stage,
a minimization algorithm will find a global minimum of f
starting from the initial estimate.

A. Preprocessing

The computational cost of evaluating f depends on the
ease of counting shadow pixels in the rendered scene. A
simple evaluation algorithm for f is possible if all the
pixels in the texture image that represent regions in shadow

are first masked out with a known color (see Figure 4).
Then, the evaluation of f reduces to counting these masked
pixels in Ir. We find the shadow regions within the image
I by selecting those pixels whose gray value lies below
a threshold. Our system suggests a threshold based on
the histogram of the image, which the user can adjust if
necessary.

Before starting the minimization, the position of the
viewpoint point Es is computed. From the time-stamp of
the image and the latitude and longitude coordinates of the
surveyed area we compute the elevation and azimuth (θ, φ)
coordinates of the sun on the sky [13]. Then the eye point
is defined as,

Es = Pc + V (θ, φ) ∗ d

where Pc is the point where the optical axis of the
camera’s initial estimate as defined by c0 intersects the
model, V (θ, φ) is a 3D vector on the unit sphere that
corresponds to the elevation θ and azimuth φ, and d is the
distance from the eye to the model, which is interactively
selected by the user in such a way that the model is seen
at a reasonable size.

B. Minimization

For the minimization stage we use an iterative nonlinear
minimizer. The cost function f is not only non-linear, but
also highly dependent on the geometry of the model M .
In addition, it has no analytical derivatives and it usually
contains several local minima, which makes the search
process more difficult.

We use simulated annealing [14] to drive the minimiza-
tion process. Simulated annealing has the advantage of
avoiding local minima by randomly sampling the parameter
space and occasionally accepting parameters that drive the
search uphill to a point of higher cost, as opposed to
gradient descent methods that only allow downhill steps.

There are several other minimization algorithms for non-
linear functions, some of which require partial derivatives.
For our cost function, these derivatives could be computed
using finite differences at the expense of extra function
evaluations per iteration. But these still can converge to a
local minimum if the initial estimate is not good enough.

C. Cost function evaluation

On each iteration k of the non-linear optimization a set
of camera parameters ck are provided by the minimization
algorithm and the cost function is evaluated.

One might be tempted to simply render the model with
texture mapping enabled and count the number of shadow
pixels in the rendered image. However, not every scene
point is visible from the texture camera, a fact which must
be accounted for in order to avoid incorrect results. It is then
necessary to compute on each iteration a visibility map that
will define which scene points are visible from the texture
camera. Fortunately, today’s graphics hardware allows us

Fig. 4. Left: Image of the Acropolis at Monte Polizzo. Right: The same image after shadow pixels have been masked in green

to compute this visibility map in real-time by following an
approach similar to that of shadow mapping [15].

Function evaluation is a two pass rendering process,
consisting of the following steps

1) Visibility computation (rendering pass 1)
a) Set eye to camera position and orientation ck

b) Set the projection model as specified by the
camera’s internal parameters

c) Render the model using depth buffering
d) Store the depth values into a texture V . This will

be our visibility map.
2) Model rendering with I as texture (rendering pass 2)

a) Set eye to Es, the position of the sun.
b) Set an orthographic projection.
c) Set V and I as textures. Use V to decide which

areas are visible from the camera.
d) Render the scene.
e) Capture the frame buffer and store it in Ir

3) Compute cost. Count the number of shadow pixels in
Ir

D. Cost function reparametrization

The optimization search has been described over a vector
of 6 parameters (φx, φy, φz, tx, ty, tz). This is not a suit-
able parametrization for a minimization search for several
reasons. First, the parameters are interdependent. Rotations
parametrized using Euler angles can suffer from singulari-
ties (e.g. Gimbal lock). Also, the use of a translation vector
adds a dependency between the rotation parameters and the
position of the camera. And as cited by Lensch et al. [9], this
parametrization has the disadvantage that a small rotation
around the camera results in a large displacement in camera
coordinates of distant points.

Instead of using Euler angles to represent a rotation, we
use a rotation axis q and rotation angle ω, just as quater-
nions do. We represent the rotation axis by its spherical
coordinates (θ, φ) on the unit sphere, and then a complete
rotation is described by the three parameters (θ, φ, ω). We
also change the center of rotation. Instead of rotating about

Translated camera frame

World Frame

Camera frame

φ

Pc

Fig. 5. Cost function reparametrization. The camera frame is translated
to the point where the initial camera’s optical axis intersects the scene.
Rotations and translations are described wrt to this translated camera
frame.

the origin of the world coordinate frame, we will rotate
around Pc (see Figure 5).

To establish the position of the camera, we use a displace-
ment vector d which describes the position of the camera
in the translated coordinate system. The reparametrized
camera is then described by,

c = (θ, φ, ω, dx, dy, dz)

E. Cost function optimization

Even after reparametrization, the search process might
place the camera in a configuration where it does not see
any point in the model. In such a case, the value of f will be
0 and the minimization will converge to an incorrect result.

To avoid these situations, one can to take into account the
number of textured pixels in Ir. This number is proportional
to the number of scene points that are visible from the
texture camera and it is to be expected that the correct

camera configuration will cover a large area of the scene.
We can compute the number of textured pixels at the same
time we count the shadow pixels if we set the screen
background to a given color (e.g. black) and use this color
to render scene points that are not visible from the texture
camera. This adds no computational cost to the evaluation
of f .

There are several ways in which this information can be
used. We define a new cost function f1 as

f1(Ir) =

{
f(Ir)

number of pixels in Ir
if v(Ir) ≥ kv.visible0

1.0 otherwise.

where

v(Ir) =
∑

x,y∈Ir

visible(Ir, x, y)

and

visible(Ir, x, y) =

 1 if pixel(x,y) of Ir

is a non-black pixel
0 otherwise.

Here f(Ir) is the count of shadow pixels, v(Ir) is the count
of textured, kv is a threshold value and visible0 is the
number of visible pixels at the initial configuration. This
form has the advantage of favoring camera configurations
with a larger coverage of the scene.

V. RESULTS

To test the performance of our algorithm we ran a set
of simulation experiments for which we knew the camera
calibration. The simulations were performed on a mesh
obtained from a single scan, thus avoiding mesh averaging
errors caused by merging multiple scans. This mesh con-
sisted of 20367 vertices and 34807 triangles. The size of
the texture image was of 3008 by 2000 pixels. An accurate
calibration was achieved by placing targets on the scene
and acquiring their position with the 3D scanner and a
geo-referenced total station. Using this camera calibration
as ground truth, we created a sequence of initial positions
by randomly perturbing the orientation of the camera by
as much as -5 to 5 degrees in each rotation angle and
the translation by -0.25 to 0.25m in each axis. From each
of these initial positions, we ran our algorithm using cost
function f1 with kv set to 0.6 and then compared the
resulting camera with the original one.

Table I shows the results of 20 simulation iterations. To
accurately compare the camera obtained from our algorithm
with the control camera, we project the mesh vertices to
the image plane of each camera and define the reprojection
error as the distance between these two points. Columns two
and three on Table I list the average reprojection error and
columns four and five the number of shadow pixels at the
start and end of the minimization. Notice that the average
reprojection error over the 20 iterations is 7 pixels, which

-6

-5.5

-5

-4.5

-4

-3.5

 0 1 2 3 4 5 6 7 8 9

lo
g(

f)

log(iteration)

log(f) vs log(iteration)

Fig. 6. This figure shows a plot of the log(f1) against the log of
the number of minimization iterations. The 20 series correspond to 20
simulation iterations.

TABLE I
SIMULATION RESULTS

Avg. reprojection error Shadow pixels
Iteration Initial End Initial End

0 661.74 5.63 3405 531
1 823.03 15.05 2945 619
2 711.32 10.43 3699 663
3 639.82 6.15 4486 530
4 707.36 6.14 2876 522
5 611.09 6.93 3699 523
6 711.28 6.87 3200 524
7 817.58 6.81 3109 568
8 606.78 7.57 3556 522
9 737.70 4.28 4297 538

10 718.43 6.31 3211 533
11 626.94 8.50 2573 562
12 742.79 6.29 2635 517
13 688.23 10.65 3244 559
14 638.68 6.05 3354 522
15 572.92 6.24 3708 555
16 699.08 5.74 1754 531
17 743.26 5.83 2979 527
18 827.53 9.06 4532 538
19 795.37 6.18 4628 520

avg 704.05 7.34 3394 545

TABLE II
REALIGNMENT RESULTS

Shadow pixels
Image Initial End Improvement %

1 3971 1535 61.34%
2 4641 2454 47.12%
3 4140 1926 53.48%
4 811 705 13.07%
5 3760 770 79.52%
6 2171 308 85.81%
7 2573 1382 46.29%
8 2838 1329 53.17%
9 1081 356 67.07%

10 4528 2975 34.30%
avg 3051 1374 54.12%

Fig. 7. Acropolis 1. Left: An initial configuration as generated during our simulation experiments. Note that the image does not align well with
neighboring textures. In particular, the area enclosed within the ellipse is misaligned. A white line has been drawn over the border between separating
the textures. Right: Result obtained after running our algorithm.

Fig. 8. Realignment of the textures of our Acropolis model. Left: The textures are misaligned and artifacts can be observed (enclosed within white
ellipse). Right: View after the textures have been re-aligned using our algorithm.

is acceptable. In the worst case, the average reprojection
was 15 pixels, which is still good. The running time for
each iteration was approximately 12 minutes on a Pentium
IV machine. This time corresponds to 3000 iterations of
our minimization. Simulated annealing is not fast, but in
our case provides accurate results in the presence of a large
number of local minima. The running time depends on two
main factors: the number of iterations and the size of the
rendering window. A maximum of 3000 iterations might
be excessive as Figure 6 suggests. This figure shows the
log of the cost of the the best configuration found so far
against the log of the number of minimization iterations
for each of the 20 simulations. The reason for choosing
a logarithmic scale is because simulated annealing has an
exponential temperature (cooling) schedule. This type of
plot is useful to estimate the number of iterations required
for the minimization to converge, which in this case is
between e7 and e8 or 1096 and 2980 iterations, closer to
the 1096 end.

Figure 7 shows two rendered models of the Acropolis at
Mt. Polizzo, the first one setting the texture camera to the
initial position of one of the simulation iterations and the

second one with the same camera set to the results of our
algorithm. Notice how the region within the ellipse, that is
misaligned and does not agree with its neighbor texture is
correctly aligned after running our algorithm.

In addition, we used our registration method to realign
the images of our Acropolis model (Figure 8)). The model
consists of a mesh of 138,000 triangles and is textured
using twelve 3008 x 2000 pixel images. We were able to
successfully re-align 10 of the 12 images. In one case, due
to holes in the acquired scan our algorithm failed to find
the intersection of the camera’s optical axis and the scene.
In the other case, the algorithm failed because the texture
image was taken late in the afternoon, close to sun set , and
areas which were not in shadow were incorrectly masked as
shadow areas during the shadow detection phase. Table II
shows the count of shadow pixels at the start and end of
our algorithm and the percentage improvement.

VI. DISCUSSION

In this paper we have presented a complete pipeline for
building a a photorealistic 3D model of an archaeological
site, with emphasis on a novel method for 2D to 3D

registration based on the shadows cast by the sun. We
showed how we successfully applied the proposed algorithm
to solve for texture misalignments. There are several areas in
which our method can be improved. One of them is shadow
detection in the images. This is important because misiden-
tified shadow pixels can drive the search to an incorrect
result. We are also looking at different ways of improving
the running speed. The speed is highly dependent on the
size of the rendered image Ir so we are experimenting with
different window sizes and evaluating how the speed and
accuracy are affected.

Our shadow based method can be used in different
contexts. One of them is robot localization: a robot could
use a camera to take an image and then use our shadow
based algorithm to find its position.

Finally, this is just a piece of the on going research in
the area of 3D modeling. We are beginning to look at
further ways of improving the final textured model. One
problem that we are looking at is simultaneous texture
alignment. The algorithm presented in this paper takes a
single texture image at a time and aligns it with respect to
the 3D model. But it does not take into account how well
this alignment corresponds with previously aligned texture
images. Another problem we need to address is the color
constancy problem: the colors of overlapping images do not
match. This is due to the images being taken under different
times of the day and different illumination conditions.

ACKNOWLEDGMENTS

In addition to the paper authors, the field team that went
to Mt. Polizzo was also integrated by Benjamin Smith,
Hrvoje Benko, Edward Ishak, Steve Feiner, Lynn Meskel
and James Conlon. We would link to thank them for their
invaluable effort and suggestions. This research was funded
in part by NSF grant IIS-0121239 and from gifts by Alias
Systems. Also, additional thanks go to Ian Morris and the
Stanford Archaeology Center for images and data from the
Monte Polizzo excavation.

REFERENCES

[1] P. K. Allen, A. Troccoli, B. Smith, S. Murray, I. Stamos, and
M. Leordeanu, “New methods for digital modeling of historic sites,”
IEEE Comput. Graph. Appl., vol. 23, no. 6, pp. 32–41, 2003.

[2] F. Bernardini and H. Rushmeier, “The 3D model acquisition
pipeline,” Computer Graphics Forum, vol. 21, no. 2, pp. 149–172,
June 2002.

[3] R. Y. Tsai, “A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf TV cam-
eras and lenses,” IEEE Journal of Robotics and Automation, vol. 3,
pp. 323–344, 1987.

[4] J.-Y. Bouguet, “Camera calibration toolbox for matlab.” 2001,
http://www.vision.caltech.edu/bouguet/calib doc.

[5] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuet-
zle, “View-based rendering: Visualizing real objects from scanned
range and color data,” in Rendering Techniques ’97 (Proceedings of
the Eighth Eurographics Workshop on Rendering). New York, NY:
Springer Wien, 1997, pp. 23–34.

[6] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman, and
G. Taubin, “Building a digital model of Michelangelo’s Florentine
Pietà,” IEEE Computer Graphics and Applications, vol. 22, no. 1,
pp. 59–67, /2002.

[7] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and
D. Fulk, “The digital michelangelo project: 3D scanning of large
statues,” in Siggraph 2000, Computer Graphics Proceedings, 2000,
pp. 131–144.

[8] C. Rocchini, P. Cignomi, C. Montani, and R. Scopigno, “Multiple
textures stitching and blending on 3D objects,” in Rendering Tech-
niques ’99, ser. Eurographics. Springer-Verlag Wien New York,
1999, pp. 119–130.

[9] H. P. Lensch, W. Heidrich, and H.-P. Seidel, “A silhouette-based
algorithm for texture registration and stitching,” Graphical Models,
vol. 63, no. 4, pp. 245–262, 2001.

[10] I. Stamos and P. K. Allen, “Automatic registration of 2-D with 3-
D imagery in urban environments,” in Proceedings of the Eighth
International Conference On Computer Vision (ICCV-01). Los
Alamitos, CA: IEEE Computer Society, July 9–12 2001, pp. 731–
737.

[11] K. Ikeuchi, A. Nakazawa, K. Nishino, and T. Oishi, “Creating
virtual buddha statues through observation,” in IEEE Workshop on
Applications of Computer Vision in Architecture, ser. Conference on
Computer Vision and Pattern Recognition, vol. 1, 2003.

[12] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM
Press, 1996, pp. 303–312.

[13] I. Reda and A. Andreas, “Solar position algorithm for solar radi-
ation applications,” National Renewable Enery Laboratory, Golden,
Colorado, Tech. Rep., June 2003.

[14] L. Ingber, “Very fast simulated re-annealing,” Mathl. Comput. Mod-
elling, vol. 12, no. 8, pp. 967–973, 1989.

[15] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli,
“Fast shadows and lighting effects using texture mapping,” in Pro-
ceedings of the 19th annual conference on Computer graphics and
interactive techniques. ACM Press, 1992, pp. 249–252.

